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treatment may lower the GoF significantly. Corrections 
for thermal diffuse scattering (Helmholdt & Vos, 1975) 
may also be important. To what extent these changes 
in data reduction will affect the charge-density 
parameters is uncertain but it may well be that the 
resolution of the bonding-density features could be 
further improved. 
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Pairs in P21: Probability Distributions which Lead to Estimates of the Two-Phase 
Structure Seminvariants in the Vicinity of 0 or 

BY EDWARD m. GREEN AND HERBERT HAUPTMAN 

Medical Foundation of  Buffalo, Inc., 73 High Street, Buffalo, New York 14203, USA 

(Received 16 May 1977; accepted 17 August 1977) 

The first sequence of nested neighborhoods of the two-phase structure seminvariant ~0~2 = ~0h, k~ -- tP~k2 in the 
space group P21 is defined, and conditional probability distributions associated with the first four 
neighborhoods derived. In the favorable case that the variance of a distribution happens to be small, the 
distribution yields a particularly reliable value for tpl 2. The most reliable estimates are obtained when 
~012 ~_ 0 or zr. 

1. Introduction (h, - h 2, 0, 11 - 12) - 0 (mod to s) (1.2) 

In the space group P2~, the linear combination of two 
phases 

~012 : ~Oh,kh -- ~Oh2kh (1.1) 

is a structure seminvariant if and only if 

where to s, the seminvariant modulus in P21, is defined 
by 

tos = (2,0,2) . (1.3) 

In short, ~0~z is a structure seminvariant if and only if 
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h I - h 2 and 1~ - 12 are even integers. The algebraic 
theory of these seminvariants was initiated several 
years ago (Hauptman, 1972), but the results obtained 
in the present series of papers go far beyond those 
obtainable by algebraic means. In this and the following 
two papers (Hauptman & Green, 1978; Green & 
Hauptman, 1978), the probabilistic theory of these two- 
phase structure seminvariants is initiated via tile 
Principle of Nested Neighborhoods (Hauptman, 
1975a,b). Unlike the theory of the four-phase structure 
invariant in P1 and P i  (Hauptman, 1977b,c), which is 
based on a single sequence of neighborhoods 
(Hauptman, 1977a), here there exist two distinct 
sequences of neighborhoods associated with the two- 
phase structure seminvariant. Estimates of (/)12 obtained 
from the first sequence of neighborhoods tend to be 
most reliable when the estimates are in the vicinity of 0 
or ~r. Estimates obtained from the second sequence of 
neighborhoods are most useful when (P12 is in the 
vicinity of +z c/2. Thus the two sequences of 
neighborhoods complement each other. 

In this paper, probability distributions associated 
with the first four neighborhoods of the first sequence 
are obtained. Probability distributions associated with 
the first four neighborhoods of the second sequence are 
derived in the second paper. In the third paper, 
conditional probability distributions of a structure 
seminvariant, given, not only magnitudes IEI, but the 
values of one or more structure seminvariants as well, 
are used to estimate the values, i.e. both magnitudes 
and signs, of a family of structure seminvariants 
consistent with a specified enantiomorph. 

In other words, if the magnitudes (2.4) are large, 

tpl 2 ~_ 0 or zc (2.6) 

according as q is even or odd, respectively. Accordingly, 
the first neighborhood of ~P~2 is defined to consist of the 
three magnitudes (2.4) which are shown in the first 
shell of Fig. 1. Since q is an arbitrary non-zero integer, 
there are many first neighborhoods. 

2.2. The second neighborhoods 

The second neighborhood of the two-phase semin- 
variant tp~ z is defined to be the second neighborhood 
of the four-phase structure invariant (2.1) (Hauptman, 
1975a,b). Thus, the second neighborhood consists of 
the three magnitudes (2.4) and the three additional 
magnitudes 

IE½(ht+h2),q+k,½(h+h) I, IE½(h~+h2),q-1~,½(h+t2)l, 
IEh,-h2.0,h-hl, (2.7) 

shown in the second shell of Fig. 1. 
In view of the quartet theory, if the six magnitudes 

(2.4) and (2.7) are all large, the quartet (2.1) is 
probably close to zero, and 

(012 '~' ~ .  (2.8) 

However, if the three magnitudes (2.4) are large and the 
three magnitudes (2.7) are small, then the quartet (2.1) 

2. The first sequence of neighborhoods of the two-phase 
structure seminvariant, ~h~ll-  ~h~l~, in P2t 

2.1. The f irst  neighborhoods 

Assume that (1.2) holds. Construct the four-phase 
structure invariant 

~h tkh  - (~h2k12 - q~(h , -h2) ,q ,~ (h -h )  - -  ~ ( h i - h 2 ) , O , ~ ( h - h )  (2.1) 
where q is an arbitrary non-zero integer. In view of 
(1.2) and (1.3), the components ½(h~ - hE) and ½(l I - / 2 )  
are integers. The theory of the first neighborhood of the 
four-phase structure invariant (Hauptman, 1975a,b) 
shows that the linear combination of phases (2.1) is 
probably close to zero if the four magnitudes of the 
first neighborhood are large. However, in P2 t, 

IE½(h~_h2),q,½(h_h)l = IE½(ht_h2),#,½(h_t2)l (2.2) 
and 

(P½(t~,-h2),q,½(lt-t2) + q)½(h,-h2),~,½(h-t2) I-~- 7ffl. (2.3) 
Therefore, in view of (2.1), if the three magnitudes 

IEh,kt, I , IEhzkhl, IE½(h,_h2),q,½(h_t2)l (2.4) 

are large, the quartet (2.1) is probably close to zero, 
and 

tpl2 ~- ~q. (2.5) 

IE~o ~ 41 

IE~ ~ 61 

E~,,(~.~,), ~ ~(qC) I IE 

IE ~(4,.4, ~,,d .~(/,./. ) I 

IE;(~;~,)..,~.~(¢¢01 

Fig. 1. The first sequence of nested neighborhoods of the two-phase 
structure seminvariant tp~ 2 in P 2 t ;  h~, = h~ (mod 2), I~, - l v 
(mod 2) and q, r, s, t, u and v are arbitrary non-zero integers. 
The first neighborhood consists of the three magnitudes in the 
first shell, the second neighborhood of the six magnitudes in 
the first two shells, etc. 



218 PAIRS IN P2t: SEMINVARIANTS IN THE VICINITY OF 0 OR ~z 

is probably close to n, and 

(O~2 ~- zc(q + 1). (2.9) 

Since q is an arbitrary non-zero integer, there are many 
second neighborhoods. 

2.3. The third neighborhoods 

The third neighborhood of (or2 is again obtained by 
arguments similar to those used previously for the 
four-phase structure invariant (Hauptman, 1977a). If 
h 3 kl 3 is a reciprocal lattice vector which satisfies 

(h2kl 2) - (h3kl3) = 0 (mod co~) (2.10) 
then 

(O23 = (oh~kh -- (oh3kh (2.11) 

is a two-phase structure seminvariant. The second 
neighborhood of (O23 consists of the six magnitudes 

IEh2kt2l, IEh3kt31, IE½(hz-h3),r,½(h-t3)l, 
[Eh2-h3,O,h-t3]' [E½(h2+h3).r+k,½(h+h) l, (2.12) 

where r is an arbitrary non-zero integer. Since (O~2 and 
(023 are both two-phase seminvariants, 

(O31 = (oh3kh- (ohlkh (2.13) 

is also a structure seminvariant and has a second 
neighborhood consisting of the six magnitudes 

IEh~t,I, IEh3kt~l, IE½(h3_h.).s,k(t3_tt)l, 
IEh3-h~.O,h_hl, [E½(h3+h~),s+_k,½(h+h)[ , (2.14) 

where s is an arbitrary non-zero integer. However, 
from (1.1), (2.11), and (2.13), the following identity 
holds: 

(O12 -t- (O23 "k- (o31 ~ 0.  (2.15) 

Therefore, in the favourable case that the six-magnitude 
estimates yield values for (O~2, (O23, and (]931 in accord 
with (2.15), (O12 will be well estimated in terms of the 
18 magnitudes (2.4), (2.7), (2.1 2), and (2.14) of which 
only the following 1 5 are distinct: 

]Eh~t,I, [Eh~hl, IEh3khl, IE½(h~-h2).q.½(h_h)l, 
[ E½(h2_h3),r,½(h_h) [, [ E½(h3_hO,s,½(h_h) [, 
]E½(h~+h2).q+k,½(h+h) l, I E½(h2+h3),r+_k.½(h+h) l, 
IE½(h3+h~),s+_k,½(h+tOI, IEht_h2,0,h_h l, 
[Eh2-h3,0,h-h]' [Eh3-h~,O,h-l~[" (2.16) 

Thus, the third (15-magnitude) neighborhood of (O~2 
is obtained by adjoining to the second (six-magnitude) 
neighborhood, (2.4) and (2.7), the nine additional 
magnitudes shown in the third shell of Fig. 1, 

IEh~kl3 I, IE½(h2-h3),r,½(h-h)[, IE½(h3-h~).s,½(h--h)l, 
IEh2-h~.O.h-hl, I Eh3_ht.O.h-h[, [E½(h2+h3).r+_k.½(h+h)[, 
IE½(h3+h, ),s+k,½(h+h)[, (2.17) 

where r and s are arbitrary non-zero integers; hence 
there are many third neighborhoods. 

One naturally anticipates that the conditional 
variance of the two-phase structure seminvariant (O~2, 
given the 15 magnitudes in its third neighborhood, 
will be small if the six-magnitude second neighbor- 
hoods of (O~2, (o23, (O31 yield estimates for the latter in 
accord with the identity (2.15). Thus, those neighbor- 
hoods are most useful for which 

[ E½(ht_h~),q,½(l,_h)[, IE½(h2-h3).r.½(h-13~[, [E½(h3-h~).s,½(h-h)[ 
(2.18) 

are large. 

2.4. The fourth  neighborhoods 

Again, as in § 2.3, the fourth neighborhood of (O~2 is 
obtained by the same method as that used for quartets 
(Hauptman, 1977a). If (h4kl4) is a reciprocal lattice 
vector satisfying 

(h,kl l )  - (h4kl4)=- O (mod cos), (2.19) 
then 

0914 : (oh.kh- (oh4kl4 (2.20) 

is a structure seminvariant. The second neighborhood 
of (O14 consists of the six magnitudes 

IEh~h[, [Eh4kl41, [E½(ht-h4).t.½(h-h)[, IE½(h~+h4),t+k,½(h+h)[, 
IE½(ht+h4)'t-k.½( h+14) l' [Eh~-h4,0. h-hI' (2.21) 

where t is an arbitrary non-zero integer. 
From (1.2), (1.3), (2.10) and (2.19), it is seen that 

h 3 and h 4 have the same parity, as do l 3 and 14, so that 

(O43 : (oh4kh- (oh3kh ( 2 . 2 2 )  

is also a structure seminvariant. The second neighbor- 
hood of (P43 consists of the six magnitudes 

[Eh3kl3[, IEhikh[, IE½(h4-h3),v,½(14-h)[, 
I E½(h4+h3).v+k,½(h+h) [, [E½(h4+h3).v-k.½(14+h)l, E lh4-h3,O.h-hl, 

(2.24) 

where v is an arbitrary non-zero integer, and the three 
seminvariants (Oa~, (°14, (o43 satisfy the identity 

(Oal + (O14 + (Oaa = 0. (2.25) 

In view of (1.2), (1.3) and (2.19) h 2 and h a have the 
same parity, as do l 2 and l 4, so that 

(O42 : (oh4kh- (oh2kh (2.26) 

is also a structure seminvariant. The second neighbor- 
hood of (O42 consists of the six magnitudes 

I Eh2k/2]' I Eh4kl4[' [g½(h4-h2),u,½th-h) I' IE½(h4+hO,u+k,½(14+12) l, 
[E½(h4+h2),u-k,½(h+h) 1, [Eh4-hz, O,h-12 [, (2.27) 
where u is an arbitrary non-zero integer. Since (Ou = 
-(Oy~, in particular (O43 = -(O34, the identity 

(O23 + (O34 + (oa2- 0 (2.28) 
holds. The 28-magnitude fourth neighborhood of (O12 
is obtained by adjoining the 13 distinct magnitudes in 
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(2.21), (2.24) and (2.27), shown in the fourth shell of 
Fig. 1, to the 15 magnitudes of the third neighborhood, 
(2.16). 

We expect that, in the favorable case that the six- 
magnitude estimates of the structure seminvariants 
(012, (0~a, (0~4, (023, (024, tP34 conform to the identities 
(2.15), (2.25) and (2.28), then the variance of the 
conditional probability distribution of (filE, given the 28 
magnitudes in its fourth neighborhood, will be reduced 
and the corresponding estimate for (012 better than those 
of the lower-order distributions. 

3. Probabilistic background and notation 

It is assumed that a crystal structure in P21 consisting 
of N atoms, not necessarily identical, in the unit cell 
is fixed, and that the three non-negative numbers 
R 1, R 2, R1~/1 o are also specified. Suppose that the 
ordered pair [(h I kll), (h2k12)] of reciprocal vectors is 
a random variable which is uniformly distributed 
over that subset of the two-fold Cartesian product 
I4: × W of reciprocal space W defined by (1.2), (1.3) 
and 

lEna, hi = R 1, IEh2kl2l = R 2 ,  IE½(ht-h2).q.½(h-h)l ---- Rl~/lO" 

(3.1) 
The structure seminvariant, (012, is then a random 
variable whose conditional probability distribution, 
P1,3, given the three magnitudes (3.1) in its first 
neighborhood, depends on the parameters R1, R2, 
R 1~/10. 

If in addition to (3.1), the three non-negative 
numbers R12/1~, Rl2/lf, R ~  are also specified, and it is 
assumed that the primitive random variable [(h~kll), 
(h2kl2)l is uniformly distributed over the subset of W x 
Wdefined by (1.2), (3.1) and 

[E½(h~+h2).q+k.½(h+ h) l --~ R 12/11, 

[E½(ht+h2).q_k.½(h+h) l - -  R 12/1i" 

I Eht_h2.0.h_ h I - -  R 12, (3.2) 

then one is led to the conditional probability distribu- 
tion, P~,6, of the structure seminvariant (ore given the 
six magnitudes (3.1) and (3.2) in its second neighbor- 
hood. 

One continues in this way first to specify the nine 
additional non-negative numbers R3, R2~/20, R23/21, 
R23/2i-, R23, R3630, R31/31, R31/3~, R3f and then to assume 
that the ordered triple [(hlkll),(h2kl2),(h3kl3)] is a 
random variable which is uniformly distributed over the 
subset of the threefold Cartesian product IV x W × I4" 
defined by (1.2), (1.3), (2.10), (3.1), (3.2) and by 

I Eh~,t~l = R3, I E½(h2-h3),r,½(h-h)l : R23/20, 

I E½(h2+ h3),r+k,½(12+13) [ "-" R 23/21, 

IE½(h2+hg,r_k,½(h+h)l = R23/2i- , IEhe_h3,0,h_13 [ = R2~,  

[E½(h3_hO.s.½(13_hiI : R3f/30, IE½(h3+hO.s+k.½(lJ+h)l --- R31/31, 

IE½(h3+h~).s-k.½(l~+l,)l =- R31/3~, IEh3_h~.O.13_hl = R3[. (3.3) 

Now one arrives at the conditional probability distri- 
bution, P1,15, of (012 given the 15 magnitudes (3.1)-(3.3) 
in its third neighborhood. In a similar way one is led to 
the conditional distribution of (012, P1,2s, given the 15 
magnitudes (3.1)-(3.3) and the 13 additional 
magnitudes: 

IEh,kl ,  I = R 4, IEl(h~-h4i.t . l(h-t4) I - -Rl i /40,  

IEhh~+h4),t+k,½(h+h) [ "-- R 14/41' 

IE½(hl+h4).t_k.½(h+h)l ~- R 14/4i', 

IEht_h4.0.h_14] -~ R l i  , IE½(h4-h2).u.½(14-h) I = R4~/5 o, 

IE½(h4+ h2).u+k.½(h+ 12) I -- R42/51, IE½(h4+h2).u-k.½(14+h)l = R42/sf, 

IEhi_h2.0.h_hl = R4g , IE½(h4-h3).v.½(14_t3)l = R45/60, 

I E½(h4+h3). v+k.½(h+/3) [ : R43/61, IE½lh,+h3),v_k,½(t4+tjiI = R43/6g, 

IEh4-h3,0,h-h I - -  R4~.  (3.4) 
In P21 the normalized structure factor E/m is defined 

by 
E h k  I = IEhkll  exp( i (0hkl)  

-- 2 ~-~2ficos 2zt (h.  rj + k ) 
(~0"91/2 j= 1 

x exp [2:rd (kyj - k ) ] ,  (3.5) 

where e = 2 if h = l = 0 and 1 otherwise; finally, 
( x j j ,  zj) is the position vector of the j th atom. The h 
and rj are two-dimensional vectors defined by 

h = (h,/), (3.6) 

rj : (Xj,  Zj) ,  (3.7) 

and fj  is the zero-angle atomic scattering factor of the 
atom labeled j ;  the term a n is defined by 

N 

an = E fin. (3.8) 
j=l 

In the case of X-ray diffraction, the fj are equal to the 
atomic numbers Zj. In the neutron diffraction case 
some of thefj may be negative. 

In the sequel conditional probability distributions of 
~012, given the magnitudes in each of its first four 
neighborhoods, are described. Only the briefest sketch 
of the derivations is given in Appendix I for the typical 
case of the second neighborhood; the heavy depen- 
dence on earlier work permits substantial abbreviation. 

4. The conditional probability distribution of the two- 
phase structure seminvariant (on -- (0h~kh -- (0h~h, 

given the three magnitudes in its first neighborhood 

Suppose that the non-negative numbers R~, R2, R12:1 o 
defined in (3.1) are specified. Then, complete to terms 
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of order 1/N, P1,3 = P~ ,3(@), the conditional probability 
distribution of ~0 n, given the three magnitudes (3.1) 
of the first neighborhood, is found to be 

1 
Pl,, TM g~,3 exp 1~22__ [2 ( -1 )qRIR2(R~/ ,  o - 1)cos @ 

+ R I R  2cos2@] , (4.1) 

which is correct through terms of order 1/N. Although 
an analytical representation for the normalization 
factor K~,3 may be found, it is not needed for the 
present purpose and, in any event, is more easily 
computed numerically in any given case. 

5. The conditional probability distribution of ~t2, 
given the six magnitudes in its second neighborhood 

Assume that the six non-negative numbers RI, R 2 
Rl~/m, Rl2/t l, R12/I~, Rl~ defined in (3.1), (3.2) are 
specified. Then, complete to terms of order I /N,  the 
conditional probability distribution, P1,6 = P~,6(@), 
of ~012, given the six magnitudes of the second neighbor- 
hood, is found to be 

1 [ - 2 ( - 1 ) q R I R  2 2 
- exp'l  -2g [(302 -- a2 0"4) R l~/10 

P1,6 - K1,6 t 0"2 

2 0"4)] COS @ + (0.2__ 0.20.4)(R122/11 + R12/l~ ) -- 3 ( 0 2 _  a2 

- 032 R2R 2 cos 2@ 

coshJ O'Rtf [(--llq(R2~/lo 1) 2RIR 2 @l} × t o32 - + cos 

f203 } 
x I o l -~2R l f i l oR ,2 i l l [R i  + R 2 + 2(-1)qR,R2 cos @ ] l a  

~.~['20' _ } 
x Io~-~sz2RI~/,oRi2/ir[R2 + R 2 + 2 ( - - 1 ) ° R i R 2  cos @], /2  . 

(5.1) 

The numbers R~, R 2, R~/~ o, RI2/1 ~, R12nb Rl~ are 
parameters of the distribution. The normalization 
factor Kl, 6 is best evaluated numerically, if desired, 
since its analytical representation is a complicated 
expression involving a multiple infinite series of 
products of Bessel functions. Details of the derivation 
of (5.1) are given in Appendix I.* 

* Appendix I has been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 32949 
(9 pp). Copies may be obtained through the Executive Secretary, 
International Union of Crystallography, 13 White Friars, Chester 
CH 1 1NZ, England. 

6. The conditional probability distribution of ¢a2, given 
the 15 magnitudes in its third neighborhood 

Assume that the 15 non-negative numbers RI, R2,. . .  , 
R, r  defined by (3.1)-(3.3) are specified. Then, Pl,15 = 
Pl,lS(@), the conditional probability distribution of ~12, 
given the 15 magnitudes (3.1)-(3.3) of the third 
neighborhood, is found to be 

1 r2~ 
P1,6 J Q~(@23) d@2, (6.1) Pl,15 Kl,i 5 0 

where 

Q1(@23) = e x p { - - 2  ( 30.2 ~ 0.2 0.4~ 0.~ / 

X [(--1)rR2R,R~5/2o cos @23 

+ ( -1)SR3Rl  R32~/ao c0s(@23 + @)] 

-2 ( 1 [ ( 1 -  1)rR2R3(R23/21 + g23al) COS @23 

+ (_I )SR3R 2 l(g31/31 +R],/3~) c0s(@23 + @)1 

+6 (~2--0204) [(--1)rR2R3 cos @23 

+ (--1)SR,R~ cos(@2, + @)] 

( a2 -_a, a,] 
03 ! [R2R 2 cos 2@23 

2 2 2~)1} + R3R l cos(2~z3 + 

x cosh [(-1)r(R~sao- 1) + 2R2R 3 cos @231 
t a2 

/ 
+2RaRI cos(@23 + @1~. 

".~ 20.3 _ 2 2(__I)rR=R3 
J 

X I o [-a-~'2 R23/IoR23/='[R2 + R] + I 

X COS (J~23 ] 1/2 t 
x I. '2 g2s,.oR2,mIR  + R2 + 2(--1)'R2R, 

X cos @23]1/2 

J203 
x I o [-~2 Ra~/loR31/31 jR2 + R2 + 2(-I) 'R3R, I¢ 

x cos(@ + @~0] la 
J 

~20.3 _ _ 2 2(_ l )SR3Rl  X I 0 t~-f~ 2 R,l/loR31131[R , + R 2 + 1 
x cos(@ + @23)1 laj,. 

(6.2) 
A simple expression for (6.1) appears not to exist. 

Hence, one must either resort to an approximate 
analytical expression for the integral or evaluate the 
expression via numerical techniques. With either 
technique the integration leads to a function of order 
1/N 2, which contains the information associated with 
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the 'trio relation', (2.15). Therefore, the conditional 
distribution, P1,15, of ~012 given the 15 magnitudes 
(3.1)-(3.3) consists of all terms of order 1/N plus those 
terms of order 1/N 2 which reflect the information in 
(2.15). 

7. The conditional probability distribution of 0h2, 
given the 28 magnitudes in its fourth neighborhood 

Denote by P1,28 = PI,28(¢) the conditional probability 
distribution of ~012, given the 28 magnitudes in the 
fourth neighborhood defined by (3.1)-(3.4). Then 

2zr 2~t 

P1,28 =K,,2 .1  P,,6 fo 01(¢23) yo Q2(¢23'¢14) d¢14 d¢23 

(7.1) 
where 

2 (30.~ - 0.20.4) Q2(¢23, ¢14) = exp --0.-~ 

2 
X [ ( - - 1 ) t R I R 4 R I ~ / 4 o  c o s  ¢14 

+ (-- 1)UR4RzR~f/50 cos (¢  -- ¢14) 
+ ( - - 1 ) V R 4 R 3 R 4 $ / 6 o  c o s ( ¢  + ¢23 --  ¢14)  ] 

2 _ 2 _ 
14/41 0.3 (0.2 0.20.4) [(--1)tRIR4( R2 + R14/41) COS ¢14 

+ (-1)UR4RE(R~2/51 + R422/5~)cos( ¢ -  ¢14) 
+ (_I)VR4R 3(R43/612 + R423/6i -) c o s ( ¢  + ¢23 --  ¢14)  ] 

6 
Jr" 0"-'- 3 (0.~- 0'20.4) [ ( - -1) tRIR4 cos ¢14 

+ (--1)UR4R2 c o s ( ¢ -  ¢14) 
+ (--1)VR4R3 cos (¢  + ¢23 -- ¢14)] 

__ ( 0.2 --  0.20.4) [RER 2 c o s  2 ¢ 1 4  
0.2 

2 2 2(¢ ¢14) -'F 2 2 2(¢ -I- ¢23 + R4R 2 cos -- R4R 3 cos 
-- ¢14)] / 

• 1"0.3 R l,i } 
x cosn~---L5 ~ [(--1)t(R~,i/40 - 1) + 2RIR 4 cos ¢14] 

I. 02 

× oos4  ,) / [ 0.2 
+ 2R4R 2 cos (¢  -- ¢14)] ~" 

CO " fO '3  R4~ 
J 

× sn- i ,  t(-1)v(g,Mo- 1) 1 
+ 2R4R 3 cOS(¢ + ¢23 -- ¢14)]~ 

J 

x I o I .  0.3/2 Rli/4oR'4/4' [R2 + R2 t + 2(--1)tRIR4 cos ¢1411/2[ 

x Io{  20.----a" [R1z/40R14/4~[R 2 + R 2 
.1 

+ 2(--1)tRIR4 cos ¢1411/2 I" 
J 

~20. 3 
x Z o t - ~ 2  R4~/5oR42/5,[R 2 + R 2 + 2(--1)UR4R2 I x c o s ( e -  ¢14)]1/2 i~ 

/ 

'20. 
x I o 1-~2 R4~/5oR4z/5~IR 2 + R~ + 2(--1)"R4R 2 

X COS((P -- (~)14)] 1'2 
J 

J" 2a 3 
x I o [ - ~ 2  R4j/6oR4',61 [R2 + R2xcos(¢ + 2(--1)'R4R3 / 

+ ¢ 2 3 -  ¢~4)]1/2 ~ " { o3 } ) 
X I 0 -~2 R43/60R43/6'tR2 + R] + 2(-1)"R4R3 

X C O S ( ¢  Jr" ¢~23 -- (/)14) ]1/2 " 

(7.2) 

The double integral in (7.1) is also evaluated by 
standard numerical integration techniques, and leads 
to terms of order 1/N 2 which contain the information 
associated with the identities (2.15), (2.25), and (2.28). 

8. The applications 

The figures which accompany this section show PI,3, 
PI,6 and P1,15 as functions of ¢ in the interval - 1 8 0  ° < 
¢ < + 180 °. They illustrate the properties of these 
probability distributions for a structure containing 
N = 100 identical atoms in the unit cell. The values 
given for the various magnitudes are mostly selected 
to exemplify ideal behavior of these distributions 
(i.e. to minimize their variance), and thus to illustrate 
the most reliable estimates of ~012 which are possible in 
a structure of this size. They confirm the plausible 
reasoning of §2. 

-3 
XIO 

15.71 - 

P~13 
I 13.96 I N =100 
I / R 1- R2= R1~./lo ~ 3 o 0  

12.22 \ | / 

10.47 ! ~ /11 

i I 8 .75 ,  / 

6.98 I / I / 

I 
/ 1 /  , 

1.75 

-180 -90 O 9'0 180 
DEGREES 

Fig. 2. The distribution P~,3 for the values of the parameters shown. 
(a) q is even ( ), (b) q is odd (---) .  
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8.1. The first neighborhood 

Fig. 2 shows that reliable estimates of (P~2 occur 
if the three magnitudes (3.1) are large. If q is even, 
the most probable value of tp~2 is zero. If q is odd the 
most probable value of (P~2 is 180 °. 

8.2. The second neighborhood 

Figs. 3 and 4 illustrate two kinds of distributions 
based on the six magnitudes of the second neighbor- 
hood. If the three magnitudes (3.1) are large and the 
three additional magnitudes (3.2) are also large, (P~2 
is likely to be near 0 if q is even or likely to be near 
+180 ° if q is odd. This is shown in Fig. 3. If the 
three magnitudes (3.1) are large and the three magni- 
tudes (3.2) are small, then the most probable value of 
(~12 is 0 if q is odd and 180 ° if q is even. This result 
is shown in Fig. 4. 

8.3. The third neighborhood 

Fig. 5 shows the conditional probability distribution 
of (P12, given that all 28 magnitudes of the third neigh- 
borhood are large. If q and r + s are both even, then 
the most probable value of tp~ 2 is 0. If, on the other 
hand, q and r + s are both odd, then the most probable 
value of ~012 is 180 °. In either of these two cases, 
the estimate for ~0~2 is extremely reliable. If, however, 
q + r + s is odd, then the most probable value of (Pl2 
is +awhere  0 < a < 180 ° . Thus, i fq i s  even a n d r  + s 
is odd, then (Pl2 ~- +60° ; if q is odd and r + s is even, 

the estimate will in general be too low to be useful for 
very complex structures, as shown, for example, by the 
relatively large variance of Fig. 5(c). Fig. 6 shows 
the result obtained when the three 'cross-terms' 

XIO -3 

15.71 

13.96 

12.22 

\ 
10.47 \ 

\ 
8.73 \ 

\ 
6.98 \ 

\ 
5.24 

3.49 

1.75 

P~16 
N=IO0 

/,/ 
\ 
\ 
\ 
\ \  

- 9 0  -180 0 90  180 
D E G R E E S  

Fig. 4. The d is t r ibut ion of  P~,6 for  the values o f  the parameters 
shown. (a) q is odd ( ); (b) q is even ( - - - ) .  

P~llS 
then tpl 2 ~_ + 120 °. In the latter cases the reliability of Xld3L 

N=IO0 
B 

19.20 t l  RI= R2= R3= 3.0 
I I  ~R1~/10-- R25/20-- R3i#o=3.01 

II /1/~:'°° '/ 
's7' l l  I I / * '= ~=~'~''° = 3"° I/ ' ~ " t '  I%~'%'"'=%"~:~%'/ I I 

'3~otl III /| 

', / 1 /  I1 / ,  l / , "  , /  

/ l /  / /  L , ,  , , ,  
1.75] ' / I \ "~  ' 7 " 4 ~ ' / / I \  , '  / 

, , + 
+ 

-180 -90 0 90 180 
-180 -90 0 90 180 DEGREES 

DEGREES Fig. 5. The distribution of  Pl,15 for the values of  the parameters 
Fig. 3. The distribution P~,6 for the values of  the parameters shown, shown. (a) q and r + s are both even ( ); (b) q and r + s 

(a) q is even ( ); (b) q is odd ( - - - ) .  are both odd ( - - - ) ;  (c) q is even and r + s is odd ( . . . . .  ). 
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(RI~,RI2/I1,R12/1 ~, etc.) of the second neighborhoods of 
each of (~12 and ~oal are small. Reliable estimates of ~12 
are obtained if q and r + s are both odd or if q and 
r + s are both even. In the former case (~12 ~ 0 ° '  

and in the latter ~12 "~" 180°" Other parity combinations 
of q and r + s lead to estimates of ¢~2 having values 
between 0 and 180 °, but with generally reduced 
reliability (e.g. Fig. 6c). 

From the favorable cases considered in Figs. 2-6 it 
is seen that as the size of the neighborhood increases, 
one may obtain a more reliable estimate of (012; the 
larger the neighborhood, the greater is the potential for 
obtaining a distribution with a very small variance. 

N= 1OO 
XIO -3 R = R2 = R3 = 3 .0  

l115 R1;~/10 = R2~I/20 = R31/30 =3-O 
15 .71 .  /~  Rl~=R12/11 = R12/1 i =O.O l 

1 / I  /R2~ =R23/21 =R23/2{ =2.51 
13.96, i i i 

~=R31/31 : R31/3~=O. 

12.22. 

10.47. 

8.73- 

/ 
I I 

5.24 

,~ ' -" ,  I I I / "  ~\ 
3"49 . ' / ' i  " \  J I \ . / "  / " ~  

1.75 \ "'I.. [_~, ./~/ / 

-180 -90 O 90 180 

DEGREES 
Fig. 6. The distribution P~,~5 for the values of the parameters 

shown. (a) q and r + s are both odd ( ); (b) q and r + s are 
both even (---) ;  (c) q is even and r + s is odd ( . . . . .  ). 

In the applications one naturally selects those semin- 
variants and those of q, r, s . . . .  which lead to distribu- 
tions having the smallest possible variance, i.e. the 
favorable cases. 

9. C o n c l u d i n g  remarks  

The first sequence of nested neighborhoods of the 
two-phase structure seminvariant tpl 2 in P21 has been 
found. The conditional probability distributions of t#l 2, 
given, in the first instance, the three magnitudes of the 
first neighborhood; in the second instance, the six 
magnitudes of the second neighborhood; thirdly, the 15 
magnitudes of the third neighborhood; and finally, the 
28 magnitudes of the fourth neighborhood, have been 
derived. The distributions yield estimates for tpl 2 which 
may lie anywhere in the interval ( -n ,n)  but which 
are most reliable in the case that (012 _~ 0 or n. As 
anticipated, when more magnitudes are used more 
reliable estimates are obtainable, but in practice the 
gain in using distributions of order higher than PI,6 
may only be marginal, as Figs. 3-6 suggest. 
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